
ROS 2 Cheat Sheet
Robotics Content Lab

www.roboticscontentlab.com

ROS 2 Command Line Interface

All ROS 2 Command Line Interface (CLI) commands
start with the ros2 command which is followed by a
verb or noun and possible <arguments>.

For any CLI command you can use the --help or -h
arguments to receive further usage documentation.
E.g.:

$ ros2 --help

$ ros2 run --help

Finally, auto-completion for any command and
argument should be enabled via the (tab) key:

$ ros2 param

ROS 2 Node Management

A node is a process that performs computation. It
can publish and subscribe to topics, provide and use
services, and send and receive actions [1].

Commands

List all active nodes:

$ ros2 node list

Display detailed information about a node:

$ ros2 node info <node name>

Set the lifecycle state of a node (e.g., inactive to
active):

$ ros2 lifecycle set <node> <state>

Get the current lifecycle state of a node:
$ ros2 lifecycle get <node>

Examples

Get info about the turtlesim node:
$ ros2 node info /turtlesim

ROS 2 Run/Launch Management

Nodes can be run individually or launched together
using a launch file utilizing the ros2 run and ros2
launch commands [2, 3].

Commands

Run a single node from a package:
$ ros2 run <package> <executable>

Launch nodes using a launch file:
$ ros2 launch <package> <launch file>

Show expected arguments for a launch file:
$ ros2 launch <package> <launch file>
--show-arguments

Examples

Run the turtlesim node of the turtlesim package:

$ ros2 run turtlesim turtlesim node

Run and rename the turtlesim node:
$ ros2 run turtlesim turtlesim node --ros-args -r

node:=my turtlesim

Launch the multisim.launch.py file from the turtlesim
package:

$ ros2 launch turtlesim multisim.launch.py

ROS 2 Topic Management

A topic is a named channel over which nodes can
exchange messages via the publish-subscribe
communication model [4].

Commands

List all active topics:
$ ros2 topic list

Echo messages published to a topic:
$ ros2 topic echo <topic>

Publish a message to a topic:
$ ros2 topic pub <topic> <message type> <mes-
sage>

Get detailed information about a topic:
$ ros2 topic info <topic>

Display the rate (Hz) of messages published to a
topic:

$ ros2 topic hz <topic>

Show the message type of a topic:
$ ros2 topic type <topic>

Examples

Publish a Twist message to the cmd vel topic with 10
hz:

$ ros2 topic pub cmd vel geome-
try msgs/msg/Twist ”{linear: {x: 0.1}}” -r
10

1

www.roboticscontentlab.com

ROS 2 Cheat Sheet
Robotics Content Lab

www.roboticscontentlab.com

ROS 2 Package Management

Packages are the primary unit of ROS 2 code
organization and reusability. A package may contain
libraries, executables, and configuration files. [9]

Commands

List all installed ROS 2 packages:
$ ros2 pkg list

Create a new ROS 2 package with dependenciesa:
$ ros2 pkg create <package name> --build-type

<ament type> --dependencies <dep1 dep2>
Show the installation path of a package:

$ ros2 pkg prefix <package name>

Show the exececutables of a package:
$ ros pkg executables <package name>

Get detailed information about a package:
$ ros2 pkg xml <package name>

Examples

Create a new package with a C++ build type:
$ ros2 pkg create my pkg --build-type

ament cmake
Create a new package with a Python build type:

$ ros2 pkg create my pkg --build-type

ament python

Get the maintainer of a package:
$ ros2 pkg xml -t maintainer pkg name

aDependencies must be resolveable by rosdep https://docs.

ros.org/en/jazzy/Tutorials/Intermediate/Rosdep.html

ROS 2 Parameter Management

Parameters are key-value pairs that are bound to a
node and can be used to configure the behavior of a
node on startup and during runtime [5].

Commands

List all parameters of a node:
$ ros2 param list <node>

Get the value of a parameter from a node:
$ ros2 param get <node> <param name>

Set a parameter on a node:
$ ros2 param set <node> <param name> <value>

Describe all parameters and their types:
$ ros2 param describe <node>

Load parameters from a YAML file:
$ ros2 param load <node> <yaml file>

Dump parameters to a YAML file:
$ ros2 param dump <node> > < path/to/-
file.yaml>

Examples

Get the use sim timea parameter:
$ ros2 param get /node use sim time

Set the use sim time for a node to debug:
$ ros2 param set /node luse sim time true

Dump the parameters to a file:
$ ros2 param dump /node > ./file.yaml

aThe use sim time parameter is used to control whether the
node should use simulation time or wall-clock time: https:

//design.ros2.org/articles/clock_and_time.html

ROS 2 Interface Inspection

Interfaces are used to define the structure of data
exchanged between nodes (messages, services, and
actions) [6].

Commands

List all available message, service, and action
interfaces:

$ ros2 interface list

List all packages that contain interfaces:
$ ros2 interface packages

List all interfaces of a package:
$ ros2 interface package <package name>

Show the definition of a specific message, service, or
action interface:

$ ros2 interface show <interface type>

Examples

Show the definition of the
geometry msgs/msgs/Twist message:

$ ros2 interface show geometry msgs/msg/Twist

Get all the actions of the example interfaces package:
$ ros2 interface package example interfaces
--only-actions

2

www.roboticscontentlab.com
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/Rosdep.html
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/Rosdep.html
https://design.ros2.org/articles/clock_and_time.html
https://design.ros2.org/articles/clock_and_time.html

ROS 2 Cheat Sheet
Robotics Content Lab

www.roboticscontentlab.com

ROS 2 Service Management

A service is a named entity that provides a way to
request work to be done and receive a response [7].

Commands

List all available services:

$ ros2 service list

Show the type of a specific service:
$ ros2 service type <service>

Call a service with arguments:
$ ros2 service call <service> <service type> <argu-
ments>

Examples

Check if the service AddTwoInts is available:
$ ros2 service list | grep AddTwoInts

Call the turtlesim teleport absolute service:
$ ros2 service call /turtle1/teleport absolute
turtlesim/srv/TeleportAbsolute {x: 2.0, y: 3.0,
theta: 0.0}

ROS 2 Action Management

Actions are used to define goal-oriented behaviors
that can be preempted and provide feedback [8].

Commands

List all available actions:

$ ros2 action list

Send a goal to an action server:
$ ros2 action send goal <action> <goal>

Cancel a previously sent goal:
$ ros2 action cancel <goal id>

Get feedback from an ongoing action:

$ ros2 action feedback <action>

Show the type of an action:
$ ros2 action type <action>

Examples

Send a goal to the turtlesim rotate absolute action:
$ ros2 action send goal /turtle1/rotate absolute
turtlesim/action/RotateAbsolute {theta: 1.57}

Sending a goal to an action and receiving feedbak:
$ ros2 action send goal /turtle1/rotate absolute
turtlesim/action/RotateAbsolute {theta: 1.57} –
feedback

ROS 2 Bag File Management (Data
Recording and Playback)

A bag file is a data format used to store ROS message
data. Bag files are useful for recording and replaying
data, which can help with debugging and testing [10].

Commands

Record messages to a bag file from specified topics:
$ ros2 bag record <topics> --output <file name>

Play messages from a bag file:
$ ros2 bag play <bagfile>

Show information about a bag file (e.g., size,
duration):

$ ros2 bag info <bagfile>

List all recorded topics in a bag file:
$ ros2 bag info <bagfile> --topics

Examples

Record data from /cmd vel and /scan topics:
$ ros2 bag record /cmd vel /scan --output

my bagfile

Replay a recorded bag file at double speed:
$ ros2 bag play my bagfile --rate 2.0

ROS 2 Diagnostics and Troubleshooting

ROS 2 offers several tools to diagnose and resolve
issues related to node communication, topic
connections, and system health.

Commands

Run diagnostics to check for common issues in the
ROS 2 environment:

$ ros2 doctor

Inspect a node’s publishers, subscribers, and services:

$ ros2 node info <node name>

Get detailed information about a topic (e.g., type,
publishers, subscribers):

$ ros2 topic info <topic>

Visualize the ROS 2 computation graph to identify
connections between nodes:

$ rqt graph

Restart the ROS 2 daemon to resolve discovery issues:
$ ros2 daemon stop
$ ros2 daemon start

3

www.roboticscontentlab.com

ROS 2 Cheat Sheet
Robotics Content Lab

www.roboticscontentlab.com

Resolving Topic Name/Type Mismatches

Mismatches between topic names or message types
can cause communication issues between nodes.
Follow these steps to resolve them:

� Inspect Node Information: Use ros2 node

info to list all topics a node publishes or
subscribes to. This will help confirm if the node
is using the correct topic name and message
type.

– Example: Inspect the turtlesim node:
$ ros2 node info /turtlesim

� Check Topic Details: Use ros2 topic info

to inspect the message type of a topic and
compare it with the expected type.

– Example: Get information about the
/cmd vel topic:

$ ros2 topic info /cmd vel

� Visualize with rqt graph: Run rqt graph to
visualize the node-topic connections and
identify possible issues with topic mismatches
or missing connections.

– Example: Launch rqt graph:
$ rqt graph

Example Workflow for Troubleshooting Topic
Issues

� Inspect the publishing node:
$ ros2 node info /publisher node

� Inspect the subscribing node:
$ ros2 node info /subscriber node

� Verify that both nodes are using the same topic
and message type:

$ ros2 topic info /common topic

� Use rqt graph to visualize the connections and
confirm proper node-topic relationships.

If the issue persists, restart the ROS 2 daemon to
ensure proper discovery of nodes:

$ ros2 daemon stop
$ ros2 daemon start

Additional Tools

� Check resource usage: Tools like top or
htop can be useful to identify memory or CPU
bottlenecks.

� Examine log files: Review logs stored in
/.ros/log for detailed error information.

ROS 2 Network and Security Tools

ROS 2 provides various networking and security tools
to manage discovery, communication, and encryption
between nodes.

Commands

Send a multicast message for node discovery (e.g., for
debugging network discovery issues):

$ ros2 multicast send

Receive multicast messages:

$ ros2 multicast receive

Start the ROS 2 daemon (manages discovery, keeps
the ROS environment active):

$ ros2 daemon start

Stop the ROS 2 daemon:
$ ros2 daemon stop

Generate a security keystore for encrypted
communication between nodes:

$ ros2 security generate keystore <directory>

Enable security for a node using environment
variables:

$ export ROS SECURITY ENABLED=1

Examples

Create a security keystore in the directory
keystore dir:

$ ros2 security generate keystore keystore dir

Environment Variables

Environment variables play a crucial role in
configuring the behavior of ROS 2 systems. Below
are some of the most important ROS 2 environment
variables:

ROS SECURITY ENABLE: Enables or disables
ROS 2 security features. Set to 1 to enable security
or 0 to disable it.

$ export ROS SECURITY ENABLE=1

ROS SECURITY KEYSTORE: Specifies the
path to the directory containing security keys and
certificates for encrypted communication between
nodes.

4

www.roboticscontentlab.com

ROS 2 Cheat Sheet
Robotics Content Lab

www.roboticscontentlab.com

$ export ROS SECURITY KEYSTORE=path to keystore

ROS PACKAGE PATH: Defines the search paths
for ROS 2 packages. It contains multiple directories
separated by colons.

$ export ROS PACKAGE PATH=/path/to/your/package

RMW IMPLEMENTATION: Specifies the
middleware implementation being used by ROS 2
(e.g., rmw fastrtps cpp, rmw cyclonedds cpp).

$ export RMW IMPLEMENTATION=middleware

COLCON DEFAULTS FILE: Points to a file that
contains default settings for Colcon commands,
allowing for custom build configurations.

$ export COLCON DEFAULTS FILE=path to defaults file

ROS ETC DIR: Specifies the directory where ROS
2 configuration files (such as launch and parameter
files) are located.

$ export ROS ETC DIR=path to etc dir

ROS DISTRO: Defines the active ROS 2
distribution (e.g., foxy, galactic, humble).

$ export ROS DISTRO=humble

ROS AUTOMATIC DISCOVERY RANGE:
Configures the automatic discovery range for ROS 2
nodes, which can help control the scope of node
discovery. Values can be local or global.

$ export ROS AUTOMATIC DISCOVERY RANGE=local

ROS DOMAIN ID: Sets the domain ID used by
ROS 2, ensuring that only nodes within the same
domain can communicate. This is useful for isolating
multiple ROS systems on the same network.

$ export ROS DOMAIN ID=id number

ROS VERSION: Specifies the version of ROS in
use. For ROS 2, this variable is set to 2.

$ export ROS VERSION=2

ROS PYTHON VERSION: Defines the Python
version used by ROS 2. Common values are 3.

$ export ROS PYTHON VERSION=3

ROS WORKSPACE: Points to the current ROS 2
workspace, where packages are built and managed.

$ export ROS WORKSPACE=path to workspace

Colcon Build System

The Colcon build system is used to build and manage
ROS 2 workspaces. It supports building multiple
packages in a single workspace and provides features
like parallel builds, dependency management, and
task execution.

Commands

Build all packages in the current workspace:

$ colcon build

Build the workspace whitout stopping on the first
error:

$ colcon build –continue-on-error

List all installed packages in the workspace:

$ colcon list

Run tests for all packages in the workspace:

$ colcon test

Generate a report of test results:

$ colcon test-result

Source the workspace setup files after building
without including underlay workspaces:

$ source install/local setup.bash

Source the workspace setup files after building with

including the underlay workspaces:
$ source install/setup.bash

Options

Build a specific package in the workspace:
$ colcon build –packages-select <package name>

Build packages while skipping dependencies:
$ colcon build –packages-ignore <package name>

Build with additional verbosity for debugging:

$ colcon build –event-handlers console direct+

Parallelize the build process (increase speed):
$ colcon build –parallel-workers <number>

Examples

Build a single package called my package:
$ colcon build –packages-select my package

Build the workspace and run all tests:

$ colcon build && colcon test

Clean the workspace and rebuild everything:

$ colcon build –clean && colcon build

Check test results after running tests:

$ colcon test-result

Must Know Flags

Use ‘symlinks’ instead of installing (copying) files
where possible (works for .py files):
$ --symlink-install

Continue other packages when a package fails to
build. Packages recursively depending on the failed
package are skipped:
$ --continue-on-error

5

www.roboticscontentlab.com

ROS 2 Cheat Sheet
Robotics Content Lab

www.roboticscontentlab.com

Show output on console:
$ --event-handlers console.direct+

Show output on console after a package has finished:
$ --event-handlers console.cohesion+

Build only specific package(s):
$ --packages-select

Build specific package(s) and its/their recursive
dependencies:
$ --packages-up-to

Build specific package(s) and other packages that
recursively depend on it:
$ --packages-above

Skip package(s):
$ --packages-skip

Skip a set of packages that have finished building
previously:
$ --packages-skip-build-finished

Pass arguments to CMake projects:
$ --cmake-args

Remove CMake cache before the build (implicitly
forcing CMake configure step):
$ --cmake-clean-cache

Build target ’clean’ first, then build (to only clean use
‘–cmake-target clean‘):
$ --cmake-clean-first

Force CMake configure step:
$ --cmake-force-configure

Environment Variables

The full path to the CMake executable:
$ CMAKE COMMAND

Flag to enable all shell extensions:
$ COLCON ALL SHELLS

Set the logfile for completion time:
$ COLCON COMPLETION LOGFILE

Set path to the yaml file containing the default values
for the command line arguments (default:
$COLCON HOME/defaults.yaml):
$ COLCON DEFAULTS FILE

Select the default executor extension:
$ COLCON DEFAULT EXECUTOR

Set the configuration directory (default: /.colcon):
$ COLCON HOME

The full path to the PowerShell executable:
$ POWERSHELL COMMAND

Bibliography

References

[1] About Nodes, https://docs.ros.org/en/
jazzy/Concepts/Basic/About-Nodes.html

[2] Starting single nodes, https://docs.ros.org/
en/jazzy/Tutorials/Beginner-CLI-Tools/

Understanding-ROS2-Nodes/

Understanding-ROS2-Nodes.html#ros2-run

[3] Starting multiple nodes,
https://docs.ros.org/en/jazzy/Tutorials/

Intermediate/Launch/Launch-Main.html

[4] About topics, https://docs.ros.org/en/jazzy/
Concepts/Basic/About-Topics.html

[5] About parameters,
https://docs.ros.org/en/jazzy/Concepts/

Basic/About-Parameters.html#parameters

[6] About interfaces,
https://docs.ros.org/en/jazzy/Concepts/

Basic/About-Interfaces.html

[7] About services, https://docs.ros.org/en/
jazzy/Concepts/Basic/About-Services.html

[8] About actions, https://docs.ros.org/en/
jazzy/Concepts/Basic/About-Actions.html

[9] Package layout, https://docs.ros.org/en/
jazzy/The-ROS2-Project/Contributing/

Developer-Guide.html#package-layout

[10] Recording and playing back data,
https://docs.ros.org/en/jazzy/Tutorials/

Beginner-CLI-Tools/

Recording-And-Playing-Back-Data/

Recording-And-Playing-Back-Data.html

[11] ROS 2 Command Line Arguments,
https://design.ros2.org/articles/ros_

command_line_arguments.html

6

www.roboticscontentlab.com
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Nodes.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Nodes.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html#ros2-run
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html#ros2-run
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html#ros2-run
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html#ros2-run
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/Launch/Launch-Main.html
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/Launch/Launch-Main.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Topics.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Topics.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Parameters.html#parameters
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Parameters.html#parameters
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Interfaces.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Interfaces.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Services.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Services.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Actions.html
https://docs.ros.org/en/jazzy/Concepts/Basic/About-Actions.html
https://docs.ros.org/en/jazzy/The-ROS2-Project/Contributing/Developer-Guide.html#package-layout
https://docs.ros.org/en/jazzy/The-ROS2-Project/Contributing/Developer-Guide.html#package-layout
https://docs.ros.org/en/jazzy/The-ROS2-Project/Contributing/Developer-Guide.html#package-layout
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://design.ros2.org/articles/ros_command_line_arguments.html
https://design.ros2.org/articles/ros_command_line_arguments.html

